bulletin of the chemical society of Japan, vol. 46, 1882—1883 (1973)

Recoil 82Br Reactions with Liquid Chlorofluorocarbons

Takeshi Tominaga, Ren Iwata, and Yoshihiro Makide*

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113

*The Institute of Physical and Chemical Research, Wako-shi, Saitama 351

(Received November 10, 1972)

The study of recoil halogen reactions with chlorofluorocarbons appears to be interesting since one can make an intramolecular comparison of the reactivities of different types of bonds, such as C-C, C-Cl, and C-F. While recoil iodine and chlorine reactions with chlorofluoromethanes have been investigated,^{1,2)} the study of recoil bromine reactions with similar systems had not been reported before our preliminary work.³⁾ In the present article we wish to report our recent data on the recoil ⁸²Br reactions with chlorofluorocarbons, such as CF₂Cl₂, CFCl₃, and CF₂ClCF₂Cl.

Experimental

The samples for neutron irradiation were prepared by sealing one of the chlorofluorocarbons (CF₂Cl₂, CFCl₃, or CF₂ClCF₂Cl) in vacuo in quartz capillaries, along with varying amounts of bromine. These liquid samples were irradiated with thermal neutrons (flux: $5 \times 10^{11} \text{ n/cm}^2 \cdot \text{s}$) for 5 min at room temperature in the rotary specimen rack of the TRIGA Mark II reactor at Rikkyo University. The accompanying γ dose was approximately 7×10^4 R.

The irradiated samples were analyzed after the decaying out of the shorter-lived bromine activities other than 82Br. Hence, the observed radiochemical yields of recoil products were predominantly the results of the isomeric transition of 82mBr.4) The samples were directly introduced into a gas chromatograph and analyzed by means of a 5 m Silicone DC 550 column. The inorganic bromine was removed by means of a short column packed with dehydrated potassium ferrocyanide powder and placed before the main column. Procedures for the radioactivity measurement and determination of the 82Br radiochemical yields of these products were the same as those in the previous work.3)

Results and Discussion

Since radiogas chromatograms of irradiated CF₂Cl₂–Br₂ and CFCl₃–Br₂ systems were reported previously,³⁾ a typical radiogas chromatogram of ⁸²Br-labeled products from the irradiated CF₂ClCF₂Cl–Br₂ system is illustrated in Fig. 1. In the thermal conductivity measurements, only the mass peak of the parent compound could be observed (the position of the parent mass peak is indicated by an arrow in Fig. 1). The unknown radioactivity peaks were identified either by comparing their retention times with those of known

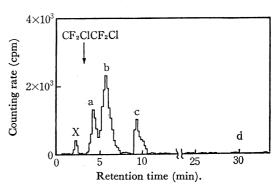


Fig. 1. Radiogas chromatogram of ⁸²Br-labeled products from the neutron-irradiated CF₂ClCF₂Cl—Br₂ system.
a: CF₂ClS²Br; b: CF₂ClCF₂S²Br; c: CF₂Br⁸²Br; d: CF₂ClCFClS²Br (expected position, but not observed); X: presumably CF₃S²Br.

compounds added as carriers, or by applying the known correlation between the logarithm of the retention time and the composition of halogen atoms in bromochlorofluorocarbons.⁵⁾ If the carrier compounds are neither commercially available nor readily prepared by ordinary chemical syntheses, γ -irradiations up to a heavy dose of similar systems (i.e., the mixtures of chlorofluorocarbons with bromine) appear to be useful

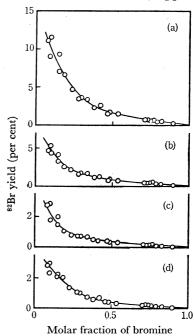


Fig. 2. Yields of major *Br-labeled products from CF₂ClCF₂Cl—Br₂ system vs. molar fraction of bromine.

(a) Total organic yield; (b) CF₂ClCF₂*Br; (c) CF₂Cl*Br; and (d) CF₂Br*Br.

¹⁾ N. J. Parks and E. P. Rack, Radiochim. Acta, 10, 26 (1968).

²⁾ S. C. Lee and C. O. Hower, J. Phys. Chem., 75, 2685 (1971).

³⁾ T. Tominaga, Y. Makide, S. Okada, Y. Kunimasa, and K. Wada, *Radioisotopes*, **20**, 541 (1971).

⁴⁾ Since the reactivities of recoil 82 Br produced by either isomeric transition of 82 mBr(91%) or 81 Br(91) are qualitatively similar, the contribution from 81 Br(91) 82 Br reaction may be less than one-tenth of the overall observed results.

⁵⁾ Y. Makide and N. Saito, presented at the 24th National Meeting of the Chemical Society of Japan (April 1971, Osaka).

for the preparation of the desired compounds in reasonable yields.⁶⁾ Hence, we have used mixtures of radiolysis products from the $CF_2Cl_2-Br_2$, $CFCl_3-Br_2$, and $CF_2ClCF_2Cl-Br_2$ systems preirradiated with γ -rays up to a total dose of about 10^{22} eV/g, as special samples for neutron irradiation in order only to identify the peaks of the ⁸²Br-labeled products from such systems.⁷⁾

Figure 2 represents the radiochemical yields of the major ⁸²Br-labeled products from the CF₂ClCF₂Cl-Br₂ system as a function of the molar fraction of bromine. Very similar curves were observed for the radiochemical yields of the major ⁸²Br-labeled products from the CF₂Cl₂-Br₂ and CFCl₃-Br₂ systems. Bromine in these systems can scavenge carbon mixed halide radicals⁶⁾ as well as thermal ⁸²Br atoms or ions. A simple analysis of these curves, *i.e.*, an extrapolation of the almost

Table 1. Yields of major *Br-labeled recoil products from Liquid CF₂Cl₂-Br₂, CFCl₃-Br₂

AND CF.CICF₂Cl-Br₃, systems

AND CIT2CICIT2CI-DIT2 SYSTEMS		
	Product	⁸² Br yield (%) ⁸⁾
(1)	Liquid CF ₂ Cl ₂ -Br ₂ system.	
	$_{(}\mathrm{CF_{2}Cl^{82}Br}$	2
	$\mathrm{CF_{2}Br^{82}Br}$	0.8
	$\mathrm{CFCl_{2}^{82}Br}$	0.4
	$_{ m CFClBr^{82}Br}$	0.2
(2)	Liquid CFCl ₃ -Br ₂ system.	
	$^{(\mathrm{CFCl_2^{82}Br})}$	6
	$egin{cases} ext{CFClBr}^{82} ext{Br} \ ext{CCl}_3^{82} ext{Br}, ext{CCl}_2 ext{Br}^{82} ext{Br} \end{cases}$	2
	CCl ₃ 82Br, CCl ₂ Br82Br	not observed
(3)	Liquid CF ₂ ClCF ₂ Cl-Br ₂ system.	
	$_{ m CF_2ClCF_2^{82}Br}$	1.6
	$\mathrm{CF_{2}Cl^{82}Br}$	0.6
	$\left< ext{CF}_2 ext{Br}^{82} ext{Br} \right $	0.7
	CF ₂ ClCFCl ⁸² Br, CFClBr ⁸² Br	not observed
	$X (CF_3^{82}Br)^{8)}$	< 0.2

a) Estimated 82Br yield from hot processes.

linear portion of the curves to the yields at zero molar fraction of bromine, may reveal approximately the ⁸²Br yields from hot processes. Table 1 summarizes the ⁸²Br yields (estimated by extrapolation) of the major recoil products from the neutron-irradiated CF₂Cl₂-Br₂, CFCl₃-Br₂, and CF₂ClCF₂Cl-Br₂ systems. The following conclusions may be drawn from the results:

CF₂Cl₂-Br₂ System. At least four ⁸²Br-labeled species, *i.e.*, CF₂Cl⁸²Br, CF₂Br⁸²Br, CFCl₂⁸²Br, and CFClBr⁸²Br, were obtained from the recoil ⁸²Br reactions with CF₂Cl₂; of those the yield of CF₂Cl⁸²Br (derived from ⁸²Br-for-Cl substitution) was larger than that of CFCl₂⁸²Br (dreived from ⁸²Br-for-F substitution). Although the mechanisms for the formation of CF₂Br-⁸²Br and CFClBr⁸²Br are not yet clear, it is likely that they are produced *via* radicals arising from the decomposition of the excited CF₂Cl⁸²Br and CFCl₂⁸²Br molecules.

 $CFCl_3$ – Br_2 System. The main 82 Br recoil products from the CFCl $_3$ –Br $_2$ system were CFCl $_2$ ⁸²Br and CF-ClBr 82 Br, both originating from 82 Br-for-Cl substitution, whereas no 82 Br-for-F substitution product, such as CCl $_3$ ⁸²Br, was observed.

CF₂ClCF₂Cl-Br₂ System. CF₂ClCF₂⁸²Br, CF₂Cl-⁸²Br, and CF₂Br⁸²Br were the major products from the CF₂ClCF₂Cl-Br₂ system,⁸⁾ indicating that ⁸²Br-for-Cl or ⁸²Br-for-CF₂Cl substituion took place predominantly. The ⁸²Br-for-F substituion product, CF₂ClCFCl⁸²Br, was not obtained.

In conclusion, the C–Cl and C–C bonds appear to be more reactive than the C–F bond in the recoil 82 Br reactions with these chlorofluorocarbons. It is worth mentioning that the C–Cl and C–C bonds are broken more readily than the C–F bond in the γ -radiolysis of these systems. However, there is one point still to be clarified: whether or not such an apparent similarity between the isomeric-transition-induced 82 Br reactions and the γ -radiolysis reactions reflects the essential similarity of their reaction mechanisms.

Further work is in progress on the general application of the recoil technique to the selective preparation of labeled bromochlorofluorocarbons.

The present authors wish to express their thanks to Professor Nobufusa Saito, the University of Tokyo, for his encouragement and support.

⁶⁾ T. Tominaga, R. Iwata, and Y. Makide, Chem. Lett., 1972,

⁷⁾ A variety of carbon mixed halides were produced by γ -irradiation up to a heavy dose, whereas no radiolysis products could be observed after 5 minutes' neutron irradiation in the reactor.

⁸⁾ Another small unidentified peak (X) in Fig. 1 may presumably be $CF_3^{82}Br$, yet its origin is not fully understood.